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Abstract
With the help of the one-dimensional quintic complex Ginzburg–Landau
equation (CGLE) as perturbations of the nonlinear Schrödinger equation
(NLSE), we derive the equations of motion of pulse parameters called collective
variables (CVs), of a pulse propagating in dispersion-managed (DM) fibre
optic links. The equations obtained are investigated numerically in order to
view the evolution of pulse parameters along the propagation distance, and
also to analyse effects of initial amplitude and width on the propagating pulse.
Nonlinear gain is shown to be beneficial in stabilizing DM solitons. A fully
numerical simulation of the one-dimensional quintic CGLE as perturbations of
NLSE finally tests the results of the CV theory. A good agreement is observed
between both methods.

PACS numbers: 42.81.Dp, 42.65.Tg, 42.25.Bs

1. Introduction

The concept of solitons describes various physical phenomena ranging from solitary waves
on a water surface to ultrashort optical pulses from a laser. The study of optical solitons is
interesting for its fundamental aspect as well as for its important applications [1, 2]. Optical
solitons may soon be the primary carriers for long- and short-distance information transmission
because, unlike pulses in a linear dispersive fibre, solitons are self-confined, propagating for
a long distance without changing shape. A well-known example of an equation which admits
pulse-like soliton solutions is the NLSE [1, 2]. It has rich properties of Hamiltonian systems,
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i.e. conservative systems. Up to now, the NLSE still attracts a lot of attention from the
scientific community due to the fact that it describes the propagation of a pulse in a nonlinear
Kerr medium. Optical solitons propagating in optical fibres may induce a host of nonlinear
phenomena such as parametric wave mixing, stimulated Raman scattering, or self-steepening
[1–4].

For long-distance communication systems, compensating for attenuation of pulses
inherent in the fibre, is an important issue. One approach is the use of periodically spaced
phase-sensitive amplifiers. Each such amplifier exhibits an associated reference phase. The
part of the signal in phase with this reference phase is amplified, while the out-of-phase
component is attenuated [5–7]. In the second approach, the losses can be compensated by
the erbium-doped amplifiers [2]. A well-known model for the study of pulse propagation in
doped fibre amplifiers is the one-dimensional quintic CGLE in a dimensionless form

iψz + (pr(z) + ipi(z))ψtt + (qr(z) + iqi(z))|ψ |2ψ
+ (cr (z) + ici(z))|ψ |4ψ = i(γr(z) + iγi(z))ψ, (1)

where ψ(z, t) is the envelope amplitude of the electric field, t is the retarded time and z is
the propagation distance. The parameters pr, pi, qr , qi , cr , ci, γr and γi are real constants.
pr measures the wave dispersion, pi the spectral filtering, qr and qi represent the nonlinear
coefficient and the nonlinear gain-absorption coefficient, respectively. We noted that nonlinear
gain helps to suppress the growth of radiative background (linear mode) which always
accompanies the propagation of nonlinear stationary pulses in real fibre links. cr and ci

stand for the higher-order correction terms to the nonlinear refractive index and the nonlinear
amplification absorption, respectively. γr and γi represent the linear gain and the frequency
shift, respectively.

The quintic CGLE plays an important role in many branches of physics, including binary
fluid convection, phase transition and many phenomena in optics where it is often used
to model several types of passively mode-locked lasers with saturable absorbers, parametric
oscillators, transverse soliton effects in wide aperture lasers and wave propagation in nonlinear
optical fibres with gain and spectral filtering [8–10]. The quintic CGLE has also been used
to describe pattern formation near a hopf bifurcation and has become a paradigmatic model
for the study of spatiotemporal chaos. The one-dimensional quintic CGLE possesses a rich
variety of soliton solutions, including coherent structures such as pulses (solitary waves),
fronts (shock waves), sources, sinks [11, 12] and new fascinating types of pulsating soliton.
Namely, different types of localized pulsating solutions such as plain pulsating, exploding
(erupting), creeping and chaotic solutions have been found [13]. Mode-locked lasers which
are typically modelled using the quintic CGLE allow experimental observation of temporal
soliton undergoing dramatic transients which we dub exploding soliton. During an explosion,
the soliton energy and spectrum undergo dramatic changes, but return to the steady-state value
afterwards [14]. The study of the effect of nonlinear gradient terms on pulsating, exploding and
creeping solitons has been made [15]. The obtained results show that the nonlinear gradient
terms can change both the pulsating and the erupting solitons into fixed shape solitons, which
are meaningful for practical use such as to realize experimentally the undistorded transmission
of femtosecond pulse in optical fibres. For the creeping soliton, the nonlinear gradient terms
will make the soliton breathe periodically at different frequencies on one side and rapidly
spread on the other side.

One of the major lines of recent research demonstrates that DM solitons for data
transmissions design will substantially increase the capacity of the fibre optic link [16].
Basically, the DM technique consists of using a transmission line with a periodic map, such that
each period is built up by two types of fibre of generally different lengths and opposite group



A collective variable approach and stabilization for dispersion-managed optical solitons 1451

velocity dispersion [16]. Dispersion-managed solitons are attracting considerable interest in
optical communication systems because of their superb characteristics which are not observed
with conventional solitons. Furthermore, transmission performance are sometimes degraded
by perturbations (as linear waves). Actually, the propagation of pulse in fibre links is always
destabilized. The use of transmission control methods such as guiding filters [17–19] were
studied in order to stabilize DM solitons propagation. In addition, it is shown that nonlinear
gain is expected to be more beneficial to DM solitons than to conventional solitons [20],
in order to stabilize DM soliton transmissions. Sufficiently strong periodic DM allows
for stationary propagation of nonlinear return-to-zero pulses with finite energy when the
average dispersion is close or even equal to zero [21]. For this reason, as can be seen in
equation (1), the constant parameters p, q, c and γ are commonly expressed as functions
of z (without loosing their constant character), i.e. p = pr(z) + ipi(z), q = qr(z) + iqi(z),

c = cr(z) + ici(z) and γ = γr(z) + iγi(z), respectively.
Since the wording DM has been originally introduced in a transmission line modelled by

the NLSE, the quintic CGLE can be rewritten as perturbations of NLSE in the following way:

iψz + pr(z)ψtt + qr(z)|ψ |2ψ = i[(γr(z) + iγi(z))ψ]

− i[pi(z)ψtt + qi(z)|ψ |2ψ + ici(z))|ψ |4ψ] + cr(z)|ψ |4ψ. (2)

Various analytical treatments have been proposed to describe the main characteristics of the
pulse evolution [22–24]. Among these various treatments, a well-studied method is the so-
called variational method involving a Gaussian trial function which provides explicit (although
approximate) analytical expressions for the pulse compression/decompression factor, the
maximum pulse amplitude and the induced frequency chirp [22]. The purpose and optimization
of the soliton transmission systems are fundamentally based on the general particle-like nature
of solitons. This particle-like behaviour has led to the formulation of collective variable (CV)
techniques for DM soliton, to obtain more insight into their dynamical behaviour, since no
exact analytical solution for DM soliton exists up to date [16]. Then, each degree of freedom
of the soliton is associated with a variable, called a collective variable (CV), describing
a physical parameter for the pulse as amplitude, chirp, frequency, pulse width, and so on
[25–28]. The proposed (CV) method allows us to obtain the explicit analytical expression for
the CVs equations of motion.

In this paper, we investigate effects of nonlinear gain and higher-order correction term
of the nonlinear refractive index on the propagation and stabilization of DM soliton via a CV
analytical approach. In section 2, we present the derivation of the CVs equations of motion.
Section 3 is devoted to the results of numerical investigations and comparisons between the
direct numerical solution of the one-dimensional quintic CGLE as perturbations of NLSE and
the analytical results of the CV theory are made. Section 4 concludes the paper.

2. Derivation of the CVs equations of motion

Let us first consider a decomposition of the original field, say ψ(z, t) at position z in the fibre
and at time t, as follows [27]:

ψ(z, t) = f (X1, X2, . . . , XN, t) + g(z, t), (3)

where parameters of the pulse are symbolically represented by Xj, j = 1, . . . , N in the
theoretical treatment of their dynamics; the ansatz function f is chosen to be the best
representation of the pulse configuration and g(z, t) is the remaining field that we call residual
field, accounts for the dressing of the soliton and any radiation coupled to the soliton’s motion.
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The substitution of equation (3) into the quintic CGLE (1) yields directly the equation of
motion for the residual field as

gz = ip(z)gtt + iq(z)|f + g|2g + ic(z)|f + g|4g + γ (z)g

−
N∑

j=1

ẊjfXj
+ ip(z)ftt + iq(z)|f + g|2f + ic(z)|f + g|4f + γ (z)f. (4)

The overhead dot represents the derivative with respect to z and the subscripts Xj denote
partial derivative. To constrain the system of new variables (CVs and g) to remain in the same
phase space as originally (see equation (1)), it is usual to minimize the residual field energy ε.
That measures the correctness (accuracy) of the ansatz function f . According to the set of
constraints given in [27], we have

−Ċj = −〈
f �

Xj
gz

〉 −
N∑

k=1

Ẋk

〈
f �

Xj Xk
g
〉
+ c.c. (5)

where c.c. stands for the complex conjugate and 〈· · ·〉means
∫ +∞
−∞(· · ·)dt . Substituting gz from

equation (4) into equation (5) leads to the following matrix equation:

− [
Ċ

] =
[
∂C
∂X

] [
Ẋ

]
+ [R] (6)

with

Rk = −2 Re
〈
ipf �

Xk
gtt

〉 − 2 Re
〈
iqf �

Xk

∣∣f + g|2g〉 − 2 Re
〈
icf �

Xk

∣∣f + g|4g〉
−2 Re

〈
γf �

Xk
g
〉 − 2 Re

〈
ipf �

Xk
ftt

〉 − 2 Re
〈
iqf �

Xk

∣∣f + g|2f 〉
−2 Re

〈
icf �

Xk

∣∣f + g|4f 〉 − 2 Re
〈
γf �

Xk
f

〉
(7)

and

∂Cj

∂Xk

= 2
∫ +∞

−∞
Re

[
f �

Xj
fXk

]
dt − 2

∫ +∞

−∞

[
gf �

Xj Xk

]
dt. (8)

The final CVs equations of motion are obtained by setting the constraint term to zero in
equation (6), and also by setting the residual field to zero (g(z, t) = 0) for the lowest-order
approximation. We assume the desired form of the function f as a Gaussian profile given by

f = X1 exp

[
− (t − X2)

2

X2
3

+ i
X4

2
(t − X2)

2 + iX5(t − X2) + iX6

]
(9)

where X1, X2,
√

2 ln 2X3, X4/2π,X5/2π and X6 represent the pulse amplitude, temporal
position, pulse width (FWHM), chirp, frequency and phase, respectively. Hence, the following
inverse matrix occurs:

[
∂C
∂X

]−1

= 1√
2π




3
2X3

0 − 1
X1

0 0 0

0 X3

X2
1

0 0 X3X4

X2
1

X3X5

X2
1

− 1
X1

0 2X3

X2
1

0 0 0

0 0 0 32
X2

1X
5
3

0 − 4
X2

1X
3
3

0 X3X4

X2
1

0 0 (4+X4
3X

2
4)

X2
1X

3
3

X3X4X5
X2

1

0 X3X5

X2
1

0 − 4
X2

1X
3
3

X3X4X5

X2
1

(3+2X2
3X

2
5)

2X2
1X3




(10)
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and the vector element

[R] =
√

2π




−pi

(
X1
X3

+ X1X3X
2
5 + X1X

3
3X

2
4

4

)
+ qi

X3
1X3√

2

+ ci
2X5

1X3√
12

− γrX1X3

−pr

(
3X2

1X5

X3
+ X2

1X3X
3
5 + 3

4X2
1X

2
4X

3
3X5

)
+ cr

2X6
1X3X5√

12

+ qr
X4

1X3X5√
2

+ γiX
2
1X3X5

−pi

(
X2

1X
2
5

2 − X2
1

2X2
3

+ 3X2
1X

2
3X

2
4

8

)
− prX

2
1X4

+ qi
X4

1

4
√

2
+ ci

√
3X6

1
18 − γr

X2
1

2

−pi
X2

1X4X
3
3

4 − pr

(
X2

1X3

8 − X2
1X

3
3X

2
5

8 − 3X2
1X

2
4X

5
3

32

)

−qr
X4

1X
3
3

16
√

2
− cr

√
3X6

1X
3
3

72 − γi
X2

1X
3
3

8

−piX
2
1X3X5 + pr

X2
1X

3
3X4X5

2

pr

(
X2

1
X3

+ X2
1X3X

2
5 + X2

1X
2
4X

3
3

4

)
− qrX

4
1X3

−cr
2X6

1X3√
12

− γiX
2
1X3




(11)

which leads to the following explicit analytical expressions for the CVs equations of motion:

Ẋ1 = γrX1 − prX1X4 + pi

(
2
X1

X2
3

+ X1X
2
5

)
− 5

√
2

8
qiX

3
1 − 4

√
3

9
ciX

5
1 (12)

Ẋ2 = 2prX5 + piX
2
3X4X5 (13)

Ẋ3 = 2prX3X4 + pi

(
1

2
X3

3X
2
4 − 2

X3

)
+

√
2

4
qiX

2
1X3 +

2
√

3

9
ciX

4
1X3 (14)

Ẋ4 = 2pr

(
4

X4
3

− X2
4

)
+ 8pi

X4

X2
3

−
√

2qr

X2
1

X2
3

− 8
√

3

9
cr

X4
1

X2
3

(15)

Ẋ5 = pi

(
X2

3X
2
4X5 + 4

X5

X2
3

)
(16)

Ẋ6 = pr

(
X2

5 − 2

X2
3

)
+ pi

(
X2

3X4X
2
5 − X4

)
+

5
√

2

8
qrX

2
1 +

4
√

3

9
crX

4
1 + γi. (17)

As the quintic CGLE is a generalized equation, it is interesting to remark that if the coefficients
pi, qi, cr , ci, γr and γi are set to zero, we obtain a purely conservative model called the standard
NLSE with the dispersion management [24]. The corresponding equations (12)–(17) in this
case are the same as those obtained by the means of variational principle in [24], indicating
that there is no shifting of the temporal position (X2 = 0) for an initial value X0

5 = 0. This
fact is the consequence of the existence of the symmetry property between the CVs in the
Gaussian ansatz [29, 30]. One should note that, using a different ansatz like hyperbolic secant
or raised-cosine, bare approximation and variational principle lead to two different sets of
pulse parameter equations.
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Figure 1. Evolution of the amplitude, pulse width and chirp versus the propagation distance for
different values of the nonlinear coefficient qr (qr = a2), for the DM fibre line. (a) a = 0.5,
(b) a = 1, (c) a = 4.

3. Numerical investigations

Using the standard fourth-order Runge–Kutta method, we carried out numerical studies of
the evolution of the pulse parameters along the propagation distance z and also the effects of
the nonlinear coefficient qr(z) and that of the higher-order correction term of the nonlinear
refractive index. It allows us to integrate the system of equations obtained by the CV analysis,
with the spatial step taken to be 0.02 and with the following sets of fixed initial conditions
(X1, X2, X3, X4, X5, X6) = (1, 0, 1, 0, 0, 0). In this perspective, we considered parameters
of equation (1) as follows:
p = pr(z) − i0.6; q = a2 − i4.6 ∗ 10−2, with qr(z) = a2; c = cr(z) + i1.6 ∗ 10−3 and
γ = 0.16. The dispersion profile that we consider with zero-average dispersion consists of
an anomalous-dispersion (pr = d1 > 0) fibre with a length z1 = 0.2, followed by a normal-
dispersion (pr = d2 < 0) fibre of length z2 = 0.05. Hence, a portion of DM fibre has a length
za = z1 + z2. Nonlinear gain element and filters are chosen with a gain function

G = 1 + qiza |ψ |2 +ciza |ψ |4 and with a transfer function T (ω) = exp[(γr + piω
2)za],

respectively.
The great number of independent parameters of equation (1) makes the study of the

whole-dimensional parameter space very complicated. So, we mainly focused on the DM
system under consideration and we vary nonlinear coefficients in order to observe and analyse
the evolution of characteristic parameters of the pulse propagating inside the fibre, and
consequently the evolution of the pulse. At first, one should note that the main important
or fundamental and well-known result is that any attempt of numerical resolution of CVs
equations of motion (see equations (12–17)) leads to a form of solution only in the case of
zero-average dispersion

( ∑2
i=1 dizi ≈ 0

)
. In the following, numerical computations will

be done for zero-average dispersion setting d1 = 1 and the parameter d2 remains, in all the
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Figure 2. Waveforms of dispersion-managed soliton along the propagation distance. The
parameters are the same as in figure 1. (a) a = 0.5, (b) a = 1, (c) a = 4.
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Figure 3. Evolution of the amplitude, pulse width and chirp versus the propagation distance for
different values of the higher-order correction term of nonlinear refractive index cr (a = 1), for
the DM fibre line. (a) cr = −0.1, (b) cr = −0.32. (c) cr = −0.6.

text, −4d1. Taking into account the nonlinear coefficient term, we focused our attention on
three different values of this dimensionless parameter, say a = 0.5, a = 1 and a = 4. This
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refractive index when guiding filters and nonlinear gain are located after each period za of DM
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(solid lines).

choice is dictated by the fact that the parameter a is related to the soliton order and governs
the relative importance of the self-phase modulation and group-velocity dispersion effects
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Figure 6. Different propagation results of the Gaussian initial pulse along the propagation distance
for two values of the nonlinear refractive index. (a) a = 1, (b) a = 4.

on the pulse evolution along the fibre [1]. One observes, as shown in figure 1, a region of
instability characterized by a great variation of the amplitude and pulse width. But, as the
nonlinear coefficient increases, the fluctuations attenuate and the amplitude in the steady state
decreases and becomes practically constant along the propagation distance. In order to better
characterize the evolution of the pulse along the fibre, figure 2 shows waveforms of DM soliton
for a = 0.5, a = 1 and a = 4. It is clearly seen that the amplitude and the pulse width reach
stable values depending on the parameter a after a distance of propagation. Consequently,
the pulse propagation is stable in the given distance. Assuming the nonlinear coefficient
a = 1, we basically pay attention to the saturation of the nonlinear refractive index. We then
change slightly this parameter, and results of numerical simulations are presented in figure 3
for cr = −0.1, cr = −0.32 and cr = −0.6. Figure 4 shows the evolution of the pulse with
the same parameters as described in figure 3. We note a large variation of both amplitude
and width along the propagation distance. In addition to the fluctuations which still exist, the
quintic nonlinear term introduces a breathing mode inside the variation of both parameters,
and this helps to stabilize the evolution of the pulse inside the fibre.

Secondly, we consider a more realistic case. Amplifiers, filters and nonlinear gain
elements are located after each d2 span and remain spaced by interval za . Coefficients
γr, pi, qi and ci are then expressed in terms of delta functions as we consider periodic-lumped
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Figure 7. Waveforms of dispersion-managed soliton along the propagation distance obtained from
numerical simulations of CVs equations for two values of the nonlinear refractive index. (a) a = 1,
(b) a = 4.

filters and nonlinear gain elements. Note that whenever the guiding filter is located at the
end of the normal-dispersion section, an instability may result and it may not be possible
to suppress the pulse fluctuations without nonlinear gain [18]. In the rest of this paper,
the parameter d1 is set to 0.05 and d2 remains, in all the text, −4d1. Taking into account the
nonlinear coefficient term, we pay attention to three different values of this parameter, say
a = 0.5, a = 1 and a = 4. The fourth-order Runge–Kutta algorithm which we use to integrate
equation of motion of CVs along the propagation distance z allows to obtain results presented
in figure 5 for the amplitude, the width and the chirp. Although the width variable X3 does
not present a breathing mode behaviour which is necessary to maintain the propagation of the
non-conventional soliton, the amplitude first decreases and then reaches an equilibrium (steady
state) where it remains practically constant. We note that the chirp converges practically from
different values of the nonlinear coefficient to a unique value in the steady state. Once more,
these curves indicate clearly that a stable pulse transmission can be achieved inside the DM
fibre.

To confirm our CV analysis and the study of the pulse propagation inside the optical fibre,
we performed a direct numerical simulations of the one-dimensional quintic CGLE (1) by
using the split-step Fourier transform method with the time and space steps being 0.043 and
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Figure 9. Variation of the amplitude and the width at z = 100za (dotted lines) and z = 200za (solid
lines) as a function of the initial amplitude when the nonlinear coefficient a = 1. (a) cr = −0.1,
(b) cr = −0.32, (c) cr = 0.6.

0.025, respectively, and the initial Gaussian pulse ψ(0, t) = exp
(− t2

2

)
. We recall that the

parameters p(z), q(z), c(z) and γ (z) entered here are the same as those in the CV analysis.
Figure 6 presents different propagation results of the Gaussian initial pulse for two values of
the nonlinear refractive index. In order to compare the results obtained by the direct numerical
resolution of equation (2) (described by figure 6) and those obtained by CVs equations,
figure 7 presents waveforms of DM solitons obtained by CV analysis with the same parameters
as in figure 6. Looking at those curves, we note a good agreement between both methods.
This fact implies a good applicability of our CV results to the study of practical propagation
of pulses along an optical fibre.

Our interest is now focused on the impact that initial parameters (basically initial amplitude
and width) could have on the dynamic of CVs (basically the amplitude of the steady state).



1460 S I Fewo et al

Hirooka and Wabnitz [31] have shown that chirp, frequency and energy (that also means
amplitude) converge from different initial values to a unique value in the steady state. As one
can see in figure 5 for numerical integration of CVs equations or in figure 6 for the direct
numerical integration of equation (1), the pulse reaches a constant amplitude after a certain
distance inside the fibre. Does this amplitude which we suppose to be in a steady state remain
unchanged if we vary the values of the parameter qr(z), cr(z) or the values of the initial pulse
profile? Figures 8 and 9 present variation of the amplitude and the width at z = 100za (dotted
lines) and z = 200za (solid lines) as a function of the initial width and the initial amplitude,
respectively. A general view of those figures indicates that the amplitude and the width are
not significantly modified when we slightly change the saturation of the nonlinear refractive
index. One observes that the amplitude remains practically constant as the pulse evolves down
the fibre (at z = 200za) depending on the initial width. Also, it is clear that there is a range of
values of the initial amplitude which allows the amplitude to be practically constant. As far as
the width is concerned, we note that its values become greater at z = 200za than at z = 100za ,
depending on the initial width or the initial amplitude. This can be understood as the pulse
broadens as it evolves down the optical fibre. These investigations allow to choose appropriate
values of the initial parameters (e.g., 1 or 1.2 for the initial amplitude) of the initial Gaussian
pulse shape launched into the DM fibre, and therefore, optimize the propagation of pulses.

4. Conclusion

In this work, we have successfully derived the CVs equations of motion for the quintic CGLE
as perturbations of the NLSE with the help of the CV treatment of DM solitons including the
residual field. The dynamics of pulse parameters can be deeply modified due to the effect
of several terms in the quintic CGLE. We have noted a stabilizing effect of the nonlinear
refractive index on the evolution of the amplitude and the pulse width. Also, it appears that
the amplitude and the pulse width reach steady state depending on the initial value of the
amplitude or the width. Results obtained by varying these initial values can permit us to
choose the best Gaussian profile for the initial pulse and then optimize the propagation. In
addition, we have mentioned in view of some propagation results presented in figures that the
analytical results obtained by CV treatment are directly applicable to the study of the pulse
propagation inside the optical fibre.

Finally, a recall of an interesting effect here is the chirped soliton stabilities indicated by
Agrawal [32] and Manousakis et al [33]. Agrawal showed that the chirped solitons are stable
only in the normal dispersion regime. In the case of anormalous dispersion, as is the case for
erbium-doped fibre amplifiers, the amplified pulse develops many subpulses. However, the
chirped solitons propagate undistorted only as long as the chirp verifies a restriction equation.
This impractical restriction has been overcome by Manousakis et al [33], who performed a
perturbed variational approach using the Pereira–Stenflo ansatz type pulse [34] to obtain a
dynamical system due to the four characteristic parameters of interest for the pulse, namely:
the amplitude, the time width, the chirp and the phase. One can see that the dynamical
system of the four characteristic parameters of the pulse can be solved in order to obtain
the corresponding differential equation of each parameter, which are similar in form to those
derived in the present manuscript.

Although the use of the CV method has been treated in the bare approximation (neglecting
the residual field), we obtained more accurate results in the dynamic of the pulse which is
described here by two other parameters (temporal position and frequency) in addition to
the four mentioned above. We can observe the qualitative behaviour of each DM soliton
parameter along the propagation distance, which provides a better view of the propagating
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pulse. Particularly, as can be seen in some presented figures, the chirp acquires steady state
along the propagation distance. To end, the bare approximation can lead to large discrepancies
with respect to the full numerical approach in predicting some fundamental parameters such
as the interactions distance of DM solitons [35]. In forthcoming studies, highly accurate
representation of DM solitons on the basis of the minimization of the residual field associated
with Hermite–Gaussian ansatz functions [36, 37], will be of an important interest. These
studies can be surely useful for improving the performance of the communication systems.
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